Claude Deschamps | François Moulin | Yoann Gentric

Maxime Bourrigan | Emmanuel Delsinne | François Lussier Chloé Mullaert | Serge Nicolas | Jean Nougayrède Claire Tête | Michel Volcker

MATHS MPSI-MP2I

TOUT-EN-UN

7^e édition

DUNOD

Couverture: création Hokus Pokus, adaptation Studio Dunod

Retrouvez nos ouvrages pour les prépas scientifiques ici

http://dunod.link/prepassc

NOUS NOUS ENGAGEONS EN FAVEUR DE L'ENVIRONNEMENT:

Nos livres sont imprimés sur des papiers certifiés pour réduire notre impact sur l'environnement.

Le format de nos ouvrages est pensé afin d'optimiser l'utilisation du papier.

Depuis plus de 30 ans, nous imprimons 70 % de nos livres en France et 25 % en Europe et nous mettons tout en œuvre pour augmenter cet engagement auprès des imprimeurs français.

Nous limitons l'utilisation du plastique sur nos ouvrages (film sur les couvertures et les livres).

© Dunod, 2024 11 rue Paul Bert, 92240 Malakoff www.dunod.com ISBN 978-2-10-086201-6

Table des matières

Avant	vant-propos		
$\operatorname{Mod}_{f \epsilon}$	e d'emploi	xii	
Part	ie I : Notions de base		
Chap	itre 0. Vocabulaire, notations	1	
I	Ensembles de nombres	2	
II	Comparaison des réels	2	
III	Le cas particulier des entiers	5	
Chap	itre 1. Logique et raisonnement	7	
I	Assertions et modes de raisonnement	8	
II	Quantificateurs	14	
III	Récurrence	21	
Exe	ercices	26	
Chap	itre 2. Ensembles, applications et relations	31	
I	Ensembles	32	
II	Applications	38	
III	Relations binaires	48	
Eve	projes	54	

Partie II : Techniques de calcul

Cha	pitre 3. Fonctions numériques de la variable réelle	65
Ι	Inégalités dans IR	66
II	Fonctions réelles de la variable réelle	72
III	Dérivation – Rappels du secondaire	80
IV	Variations d'une fonction sur un intervalle	86
Ex	xercices	95
Cha	pitre 4. Calculs algébriques et trigonométrie	101
I	Symboles \sum et \prod	102
II	Coefficients binomiaux, formule du binôme	116
III	I Petits systèmes linéaires, méthode du pivot	119
IV	Trigonométrie	124
Ex	xercices	141
Cha	pitre 5. Nombres complexes	157
Ι	L'ensemble des nombres complexes	159
II	Résolution d'équations algébriques dans ${\mathfrak C}$	175
III		181
Ex	xercices	190
Cha	pitre 6. Fonctions usuelles	211
Ι	Fonctions logarithmes et exponentielles	212
II	Fonctions puissances	215
III	Fonctions circulaires	219
IV	Fonctions hyperboliques	227
V	Fonctions à valeurs complexes	230
Ex	xercices	239
Cha	pitre 7. Primitives et calculs d'intégrales	249
Ι	Primitives	250
II	Recherche de primitives et calcul d'intégrales	259
Ex	xercices	264
Cha	pitre 8. Équations différentielles linéaires	275
ī	Équations différentielles linéaires du premier ordre	276
II	Équations différentielles linéaires du second ordre à coefficients constants	
	xercices	295

Partie III : Analyse

Chap	itre 9. Nombres réels, suites numériques	309
I	L'ensemble des nombres réels	310
II	Généralités sur les suites réelles	314
III	Limite d'une suite réelle	317
IV	Opérations sur les limites	323
V	Résultats d'existence de limites	328
VI	Traduction séquentielle de certaines propriétés	330
VII	Suites complexes	331
	I Étude de suites, suites récurrentes	335
Exe	rcices	357
Chap	itre 10. Limites et continuité	371
I	L'aspect ponctuel : limites, continuité	372
II	L'aspect global : fonctions continues sur un intervalle	389
III	Extension aux fonctions à valeurs complexes	398
Exe	rcices	409
Chap	itre 11. Dérivation	423
I	Dérivée	424
II	Théorèmes de Rolle et des accroissements finis	430
III	Fonctions de classe \mathcal{C}^k	439
IV	Extension aux fonctions à valeurs complexes	446
Exe	rcices	456
Chap	itre 12. Fonctions convexes	469
I	Fonctions convexes	470
II	Convexité et dérivabilité	474
Exe	rcices	482
Chap	itre 13. Intégration	495
I	Intégrale des fonctions en escalier	496
II	Intégrale des fonctions continues par morceaux	501
III	Intégration et dérivation	508
IV	Formules de Taylor globales	509
Exe	rcices	520

Table des matières

Chap	itre 14. Relations de comparaison	529
I	Fonctions dominées, fonctions négligeables	531
II	Fonctions équivalentes	535
III	Opérations sur les relations de comparaison	540
IV	Relations de comparaison sur les suites	545
Exe	rcices	550
Chap	itre 15. Développements limités	557
I	Généralités	558
II	Opérations sur les développements limités	568
III	Applications des développements limités	582
IV	Développements asymptotiques	586
Exe	rcices	595
Chap	itre 16. Séries numériques	613
I	Séries numériques	614
II	Séries à termes réels positifs	622
III	Séries absolument convergentes	626
IV	Application à l'étude de suites	630
Exe	rcices	634
Part	ie IV : Algèbre	
Chap	itre 17. Arithmétique dans Z	645
I	Divisibilité dans ${\mathbb Z}$	646
II	PGCD, PPCM	648
III	Nombres premiers	656
IV	Congruences	661
Exe	rcices	669
Chap	itre 18. Structures algébriques usuelles	677
Ι	Lois de composition interne	678
II	Groupes	686
III	Anneaux	690
Exe	rrices	699

Chap	itre 19. Calcul matriciel	70
I II	Matrices	70 7
III	Anneau des matrices carrées	7
Exe	ercices	7
Chap	oitre 20. Polynômes	7
I	Anneau des polynômes à une indéterminée	7
II	Divisibilité et division euclidienne	7.
III	Fonctions polynomiales et racines	7.
IV	Dérivation	7
V	Factorisation dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$	7
VI	Arithmétique dans $\mathbb{K}[X]$	7
Exe	ercices	7
Chap	itre 21. Fractions rationnelles	8
I	Corps des fractions rationnelles	8
II	Décomposition en éléments simples	8
III	Primitives d'une fonction rationnelle	8
Exe	ercices	8
Chap	itre 22. Espaces vectoriels	8
I	Espaces vectoriels	8
II	Sous-espaces vectoriels	8
III	Familles de vecteurs	8
IV	Sous-espaces affines	8
$\operatorname{Ex}\epsilon$	ercices	8
Chap	itre 23. Applications linéaires	8
I	Définition et propriétés	8
II	Endomorphismes	8
III	Applications linéaires et familles de vecteurs	8
IV	Caractérisation d'une application linéaire	8
V	Formes linéaires et hyperplans	8
VI	Équations linéaires	8
Exe	ercices	9

Table des matières

Chap	itre 24. Dimension finie	911
I II III IV Exe	Dimension d'un espace vectoriel	912 918 921 926 935
Chap	itre 25. Représentation matricielle	947
I II Exe	Matrices et applications linéaires	948 959 974
Chap	itre 26. Déterminants	985
I II IV V VI VII Exe	Groupe symétrique Formes p-linéaires alternées Déterminant d'une famille de vecteurs Déterminant d'un endomorphisme Déterminant d'une matrice carrée Calcul des déterminants Comatrice creices	986 990 995 997 999 1002 1006
Chap	itre 27. Espaces préhilbertiens réels	1027
I II III Exe	Produit scalaire	1028 1033 1038 1046
Chap	itre 28. Dénombrement	1055
I II Exe	Ensembles finis	1056 1059

Partie V : Probabilités

Chapi	tre 29. Probabilités — Variables aléatoires	1085
Ī	Univers	1086
II	Espaces probabilisés	1091
III	Loi d'une variable aléatoire	1094
IV	Couples de variables aléatoires	1098
Exe	rcices	1105
Chapi	tre 30. Conditionnement — Indépendance	1119
I	Probabilités conditionnelles	1120
II	Événements indépendants	1124
III	Variables aléatoires indépendantes	1127
Exe	rcices	1139
Chapi	tre 31. Espérance — Variance	1155
I	Espérance d'une variable aléatoire	1156
II	Variance	1160
III	Covariance — Variance d'une somme	1162
IV	Inégalités probabilistes	1167
Exe	rcices	1173
Parti	ie VI : Vers la deuxième année	
Chapi	tre 32. Familles sommables	1193
I	Familles sommables de réels positifs	1194
II	Familles sommables de nombres complexes	1200
III	Application aux sommes doubles	1205
Exe	rcices	1216
Chapi	tre 33. Fonctions de deux variables	1229
I	Fonctions continues sur un ouvert de \mathbb{R}^2	1230
II	Fonctions de classe \mathcal{C}^1	1233
III	Dérivation des fonctions composées	1239
IV	Extrema	1243
Exe	rcices	1251
Index		1265

Avant-propos

Comme la précédente, cette édition du Tout-en-un de mathématiques est adaptée au programme entré en vigueur en classe préparatoire MPSI en septembre 2021. Suite aux précieux retours ayant été faits par nos lecteurs, des améliorations ont été apportées par rapport à l'édition précédente.

Rappelons l'ambition de ce livre : faire tenir, en un seul volume, cours complet et exercices corrigés.

Lors de l'élaboration de cet ouvrage, l'équipe d'auteurs ne s'est pas contentée d'adapter l'ancien livre au nouveau programme, mais a repensé chaque chapitre en profondeur, dans un souci permanent de clarté et de concision.

Il nous tient à cœur de préciser quelques éléments clés de la structure du livre :

- Plutôt que de faire figurer systématiquement, à la suite de l'énoncé d'une proposition ou d'un théorème, sa démonstration entièrement rédigée, nous préférons parfois donner un principe de démonstration (la démonstration complète étant alors reléguée en fin de chapitre). L'objectif est double :
 - * rendre l'exposé du cours plus concis et plus facile à lire lorsque l'étudiant ne souhaite pas s'attarder sur les démonstrations;
 - * l'étudiant, ayant à sa disposition un principe de démonstration, peut soit (en cas de première lecture) tenter de réfléchir par lui-même à la manière d'élaborer la preuve complète, soit (en cas de lecture ultérieure) se souvenir rapidement de cette preuve.
- Chaque chapitre se conclut par une série d'exercices permettant à l'étudiant de s'entraîner. Chacun de ces exercices est entièrement corrigé.
 - * Certains de ces exercices ont pour mission de faire appliquer de manière ciblée un théorème ou une méthode; sous le numéro de l'exercice est alors indiqué le numéro de la page du cours associée. Inversement, ces exercices sont signalés dans la marge, à l'endroit concerné du cours.
 - S'il n'est pas totalement indispensable de traiter ces exercices lors d'une première lecture du cours, leur lien étroit avec celui-ci les rend particulièrement intéressants pour assimiler les nouvelles notions et méthodes.
 - * L'étudiant trouvera également des exercices d'entraînement un peu plus ambitieux, demandant plus de réflexion. Certains, plus difficiles, sont étoilés.

Bien entendu nous sommes à l'écoute de toute remarque dont les étudiants, nos collègues, tout lecteur... pourraient nous faire part (à l'adresse électronique ci-dessous). Cela nous permettra, le cas échéant, de corriger certaines erreurs nous ayant échappé et surtout ce contact nous guidera pour une meilleure exploitation des choix pédagogiques que nous avons faits aujourd'hui dans cet ouvrage.

« Mode d'emploi » d'un chapitre

Une introduction présente le sujet traité.

Calculs algébriques et trigonométrie

Nous introduisons dans ce chapitre des outils de calculs algébriques (les symboles \sum et \prod , les coefficients binomiaux et la formule du binôme, les systèmes linéaires et la méthode du pivot), ainsi que des notions de trigonométrie.

Les encadrés correspondent soit à des théorèmes, propositions ou corollaires, qui partagent le même système de numérotation, soit à des définitions, qui ont leur propre numérotation.

Proposition 2 _____

Pour tout
$$z \in \mathbb{C}$$
, on a : $\operatorname{Re} z = \frac{z + \overline{z}}{2}$ $\operatorname{Im} z = \frac{z - \overline{z}}{2i}$ et $\overline{\overline{z}} = z$.

Corollaire 3 _

Un complexe z est réel si, et seulement si, $z=\bar{z}$. Un complexe z est imaginaire pur si, et seulement si, $z=-\bar{z}$.

Définition 3

Pour tout réel θ , on note $e^{i\theta}$ le nombre complexe défini par $e^{i\theta}=\cos\theta+i\sin\theta$.

La démonstration de chaque résultat encadré, lorsqu'elle ne suit pas directement celui-ci, est indiquée par un renvoi.

Proposition 6 Pour tout
$$z \in \mathbb{C}^*$$
 on a $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$. De plus, $|z| = 1$ équivaut à $\frac{1}{z} = \bar{z}$.

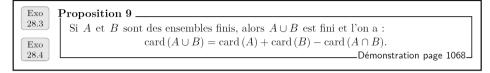
Les points de méthode apparaissent sur fond grisé.

Point méthode Les règles de calcul précédentes permettent de calculer des conjugués souvent bien plus efficacement qu'en utilisant les parties réelle et imaginaire.

Les points auxquels il faut faire particulièrement attention sont signalés par un filet vertical sur la gauche.

Attention Quand on utilise la relation de Chasles, il faut bien prendre garde à ne pas compter deux fois le terme a_r !

Des renvois vers des exercices peuvent apparaître en marge au sein du cours.



Les exemples sont repérés par deux coins.

$$\boxed{ \textbf{Ex. 1.} \text{ La fonction } x \mapsto \frac{x^2}{2} \text{ est une primitive sur } | \mathbb{R} \text{ de la fonction } f : x \mapsto x \text{ donc les primitives} }$$
 sur $| \mathbb{R} \text{ de } f \text{ sont les fonctions } x \mapsto \frac{x^2}{2} + C \text{ avec } C \in | \mathbb{K}.$

Des exercices sont proposés en fin de chapitre, avec éventuellement un rappel du numéro de la page de cours où se trouve la notion dont l'exercice est une application.

S'entraîner et approfondir

18.1 Soit X un ensemble possédant au moins deux éléments distincts a et b. Construire deux $^{\rightarrow 679}$ applications f_a et f_b de X dans X telles que $f_a \circ f_b \neq f_b \circ f_a$.

Certains exercices bénéficient d'indications, et les plus difficiles sont étoilés.

* 11.28 Soit
$$f$$
 l'application définie sur $[0,1[$ par $f(x)=\frac{1}{\sqrt{1-x^2}}\cdot$
Démontrer, pour tout entier nature n et pour tout $x\in [0,1[$, que $f^{(n)}(x)\geqslant 0$.
Indication. On pourra chercher une relation entre f' et f , puis une seconde relation donnant $f^{(n+1)}$ en fonction des $f^{(k)}$ avec $k\leqslant n$.

Tous les exercices sont entièrement corrigés.

Solutions des exercices

20.1 Le polynôme P est la différence de deux polynômes de K_n[X], donc P ∈ K_n[X]. Le coefficient en Xⁿ de chacun de ces deux polynômes vaut 1, donc le coefficient en Xⁿ de P est nul et P est de degré au plus n − 1. Le coefficient en Xⁿ⁻¹ de P est −2n−5n = −7n d'après la formule du binôme. Ce coefficient étant non nul, on obtient deg P = n − 1.

Chapitre 0: Vocabulaire, notations

Ι	Ensembles de nombres	2
II	Comparaison des réels	2
TTT	Le cas particulier des entiers	.5

Vocabulaire, notations

I Ensembles de nombres

Parmi les nombres que nous utilisons, nous pouvons distinguer les catégories suivantes. Les entiers naturels : 0, 1, 2,

L'ensemble des entiers naturels est noté IN.

Les entiers relatifs : il s'agit des entiers naturels et de leurs opposés.

L'ensemble des entiers relatifs est noté \mathbb{Z} .

Les décimaux : il s'agit des nombres de la forme $\frac{k}{10^n}$ avec $k \in \mathbb{Z}$ et $n \in \mathbb{N}$.

L'ensemble des nombres décimaux est noté \mathbb{D} .

Les rationnels : ce sont les quotients d'entiers $\frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

L'ensemble des nombres rationnels est noté \mathbb{Q} .

Les réels : nous supposons connu l'ensemble \mathbb{R} des nombres réels, ainsi que ses opérations usuelles $+, -, \times$ et /.

Nous étudierons les principales propriétés de IR aux chapitres 3 et 9.

 $\begin{bmatrix} 158 \\ 1 \end{bmatrix}$

Les complexes : nous étudierons au chapitre 5 l'ensemble \mathbb{C} des nombres complexes, c'est-à-dire l'ensemble des nombres qui s'écrivent a+ib, avec $(a,b) \in \mathbb{R}^2$, où i est un nombre (non réel!) dont le carré vaut -1.

Ces ensembles privés de 0 sont respectivement notés \mathbb{N}^* , \mathbb{Z}^* , \mathbb{D}^* , \mathbb{Q}^* , \mathbb{R}^* et \mathbb{C}^* .

Il Comparaison des réels

Inégalités

L'ensemble IR est muni des relations de comparaison \leq et <. Si $x \in$ IR et $y \in$ IR, on dispose de :

- la relation $x \le y$, qui se lit « x est **inférieur** (ou égal) à y » ou « x est **plus petit** que y »; on peut aussi écrire $y \ge x$ qui se lit « y est **supérieur** (ou égal) à x » ou encore « y est **plus grand** que x »;
- la relation x < y, qui se lit « x est strictement inférieur à y » ou « x est strictement plus petit que y »; on peut aussi écrire y > x qui se lit « y est strictement supérieur à x » ou encore « y est strictement plus grand que x »

On a naturellement x < y si, et seulement si, $x \le y$ et $x \ne y$.

Il y a une terminologie propre à la comparaison avec 0:

- un réel x est **positif** (respectivement **strictement positif**) si $x \ge 0$ (respectivement x > 0);
- un réel x est **négatif** (respectivement **strictement négatif**) si $x \le 0$ (respectivement x < 0).

Notations

- \mathbb{R}_+ et \mathbb{Q}_+ désignent respectivement les ensembles des réels positifs et des rationnels positifs.
- \mathbb{R}_+^* et \mathbb{Q}_+^* désignent respectivement les ensembles des réels strictement positifs et des rationnels strictement positifs.
- \mathbb{R}_{-} , \mathbb{Q}_{-} et \mathbb{Z}_{-} désignent respectivement les ensembles des réels négatifs, des rationnels négatifs et des entiers négatifs.
- \mathbb{R}_{-}^{*} , \mathbb{Q}_{-}^{*} et \mathbb{Z}_{-}^{*} désignent respectivement les ensembles des réels strictement négatifs, des rationnels strictement négatifs et des entiers strictement négatifs.

Intervalles de IR

Soit a et b deux réels tels que $a \leq b$. On note 1 :

$$[a,b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\} \\ [a,b[= \{x \in \mathbb{R} : a \leqslant x < b\}] -\infty,b] = \{x \in \mathbb{R} : x \leqslant b\} \\ [a,b] = \{x \in \mathbb{R} : a < x \leqslant b\} \\ [a,b] = \{x \in \mathbb{R} : a < x \leqslant b\} \\ [a,b] = \{x \in \mathbb{R} : a < x \leqslant b\} \\ [a,b] = \{x \in \mathbb{R} : x$$

Ces ensembles, ainsi que $\mathbb{R} =]-\infty, +\infty[$, sont appelés **intervalles** de \mathbb{R} .

Remarques

- L'ensemble IR est aussi appelé la droite réelle ou droite numérique.
- L'ensemble vide est un intervalle puisque, par exemple, $\emptyset = [2, 2]$.
- Les quatre intervalles de la colonne de droite sont appelés demi-droites.
- Dans chacun des cas précédents, le réel a (respectivement b) est appelé extrémité inférieure (respectivement extrémité supérieure) de l'intervalle.

Si I est la demi-droite $[a, +\infty[$ ou la demi-droite $]a, +\infty[$, alors $+\infty$ est l'extrémité supérieure de I.

De même, $-\infty$ est l'extrémité inférieure des demi-droites $]-\infty,b[$ et $]-\infty,b[$.

Si $I = \mathbb{R}$, alors ses extrémités sont $-\infty$ et $+\infty$.

• Si $a \leq b$, l'intervalle [a, b] est appelé **segment** [a, b].

^{1.} Une double inégalité du type $a \le x \le b$ signifie $a \le x$ et $x \le b$.

Chapitre 0. Vocabulaire, notations

• Par définition, les **intervalles ouverts** de IR sont les intervalles de la forme :

$$]a, +\infty[,]-\infty, a[\text{ ou }]a, b[\text{ avec } a < b,$$

ainsi que IR et l'ensemble vide.

• Les intervalles fermés sont les intervalles de la forme $[a, +\infty[$ et $]-\infty, a]$ avec $a \in \mathbb{R}$, les segments, ainsi que \mathbb{R} et l'ensemble vide.

On remarque que \mathbb{R} et \emptyset sont à la fois ouverts et fermés et que ce sont les seuls intervalles qui vérifient cette propriété.

- Les intervalles de la forme [a, b[ou]a, b], avec a < b sont dits **semi-ouverts** ou **semi-fermés**.
- L'intérieur d'un intervalle I est l'intervalle ouvert qui a les mêmes extrémités que I. Ainsi, pour $a \leq b$, l'intérieur des intervalles [a,b], [a,b[,]a,b[et]a,b[est l'intervalle ouvert]a,b[.

Un point intérieur d'un intervalle I est donc un point de l'intérieur de I.

Dans la suite de ce livre, on utilisera souvent l'expression : « soit I un intervalle d'intérieur non vide ». Cela signifie que les extrémités de I sont distinctes, et permet de dire que I contient deux points distincts ou encore que I contient une infinité d'éléments. Dans ce cas, on dit aussi qu'il s'agit d'un intervalle « **non trivial** ».

Partie entière

Définition 1

La **partie entière** d'un réel x est le plus grand entier relatif n tel que $n \le x$. On le note |x|.

L'existence et l'unicité d'un tel entier sera prouvée à la page 313.

On a donc, pour tout $x \in \mathbb{R}$:

$$\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$$
 ou encore $x - 1 < \lfloor x \rfloor \leqslant x$.

Remarque On peut parfois rencontrer la notation $\lceil x \rceil$ qui désigne le plus petit entier relatif n tel que $x \leq n$, appelé aussi **partie entière supérieure**.

- Pour $x \in \mathbb{Z}$, on a naturellement $\lceil x \rceil = x = \lfloor x \rfloor$.
- Sinon, on a $\lfloor x \rfloor < x < \lceil x \rceil$ et $\lceil x \rceil = \lfloor x \rfloor + 1$.

Droite numérique achevée

Définition 2 ____

On appelle droite numérique achevée l'ensemble $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$.

On étend la relation \leqslant à $\overline{\mathbb{IR}}$ en posant $-\infty \leqslant x \leqslant +\infty$ pour tout $x \in \overline{\mathbb{IR}}$.

Remarque L'ensemble $\mathbb{R}_+ \cup \{+\infty\}$ se note aussi $[0, +\infty]$.

III Le cas particulier des entiers

Propriétés

Nous admettons les propriétés fondamentales suivantes des entiers.

- Si a et b sont deux entiers (relatifs), on a a < b si, et seulement si, $a \le b 1$.
- Toute partie non vide A de \mathbb{N} possède un plus petit élément a, c'est-à-dire un élément a de A tel que $a \leq n$ pour tout n dans A.

Une partie A de \mathbb{Z} est dite **minorée** s'il existe a dans \mathbb{Z} tel que $a \leq n$ pour tout n de A. On définit de même les parties **majorées**. La deuxième propriété ci-dessus se généralise :

- toute partie non vide et minorée de **Z** admet un plus petit élément ;
- ullet toute partie non vide et majorée de ${\mathbb Z}$ admet un plus grand élément.

Intervalles d'entiers

Soit a et b deux entiers relatifs vérifiant $a \leq b$. On note :

$$\begin{bmatrix} a, b \end{bmatrix} = \left\{ n \in \mathbb{Z} : a \leqslant n \leqslant b \right\},
 \begin{bmatrix} a, +\infty \end{bmatrix} = \left\{ n \in \mathbb{Z} : a \leqslant n \right\},
 \end{bmatrix} -\infty, a \end{bmatrix} = \left\{ n \in \mathbb{Z} : n \leqslant a \right\}.$$

Remarques

• Pour a et b entiers relatifs, on a :

$$[\![a,b]\!]=[a,b]\cap \mathbb{Z},\quad [\![a,+\infty[\![=[a,+\infty[\cap\mathbb{Z}\quad\text{et}\quad]\!]-\infty,b]\!]=]-\infty,b]\cap\mathbb{Z}.$$

 \bullet On n'a pas donné de notation pour des intervalles ouverts d'entiers, car, par exemple, pour a et b entiers, on a :

$$\{n \in \mathbb{Z} \ : \ a < n \leqslant b\} = [\![a+1,b]\!].$$

• Lorsque a > b, l'intervalle [a, b] est vide. Ainsi, par exemple, pour $n \in \mathbb{N}$, l'intervalle [1, n] est vide si, et seulement si, n = 0.

Chapitre 1 : Logique et raisonnement

Ι	\mathbf{Asse}	rtions et modes de raisonnement	8
	1	Assertions	8
	2	Connecteurs	G
	3	Modes de raisonnement \dots	12
II	Qua	ntificateurs	1 4
	1	Quantificateurs universel et existentiel	14
	2	Propriétés élémentaires sur les quantificateurs	18
III	Récu	irrence	21
	1	Raisonnement par récurrence	21
	2	Récurrence double	23
	3	Récurrence forte	24
	4	Récurrences finies	25
Exe	ercices		26

Logique et raisonnement

I Assertions et modes de raisonnement

1 Assertions

La notion d'assertion est une notion première. Intuitivement, une assertion est une phrase mathématique qui est soit vraie soit fausse.

- **Ex. 1.** « 2 est un entier impair » est une assertion (fausse).
- **Ex. 2.** « Tout entier naturel pair supérieur ou égal à 4 est la somme de deux nombres premiers » est une assertion dont on ne sait pas actuellement si elle est vraie ou fausse ¹.

Une assertion peut dépendre de paramètres.

Ex. 3. L'assertion « n est premier » est une assertion dont la véracité dépend de n.

Remarque Pour souligner la dépendance en n de cette assertion, on peut la noter P(n).

- **Ex. 4.** L'assertion « f(x) = 3 » dépend de f et de x.
- **Ex. 5.** L'assertion « $(x+1)^2 = x^2 + 2x + 1$ » est vraie pour tout réel x.
- **Ex. 6.** L'assertion « $\sqrt{x^2}=x$ » est vraie pour tout réel x positif et fausse pour tout réel x strictement négatif.

 $\textbf{Convention} \quad \text{Soit P une assertion. On \'ecrit la plupart du temps}:$

« supposons P » — au lieu de — « supposons que P soit vraie »

« montrons P » au lieu de « montrons que P est vraie ».

^{1.} On pense néanmoins qu'elle est vraie (conjecture de Goldbach).

2 Connecteurs

Définition 1

Soit P et Q deux assertions. On appelle :

- **négation** de *P*, et l'on note NON *P*, toute assertion qui est vraie lorsque *P* est fausse et fausse sinon :
- **conjonction** de P et Q, et l'on note P ET Q, toute assertion qui est vraie lorsque les assertions P, Q sont toutes les deux vraies, et fausse sinon;
- **disjonction** de *P* et *Q*, et l'on note *P* ou *Q*, toute assertion qui est vraie lorsqu'au moins l'une des deux assertions *P*, *Q* est vraie, et fausse sinon;
- équivalence entre P et Q, et l'on note $P \Leftrightarrow Q$, toute assertion qui est vraie lorsque les assertions P, Q sont toutes les deux vraies ou toutes les deux fausses, et fausse sinon;
- implication de Q par P, et l'on note $P \Rightarrow Q$, toute assertion qui est fausse lorsque P est vraie et Q est fausse, et vraie dans tous les autres cas.

Remarque On peut visualiser ces définitions à l'aide de tables de vérité :

P	Q	$\operatorname{NON} P$	P et Q	P ou Q	$P \Leftrightarrow Q$	$P \Rightarrow Q$
fausse	fausse	vraie	fausse	fausse	vraie	vraie
fausse	vraie	vraie	fausse	vraie	fausse	vraie
vraie	fausse	fausse	fausse	vraie	fausse	fausse
vraie	vraie	fausse	vraie	vraie	vraie	vraie

Notation Dans le texte de ce chapitre nous noterons les trois premiers connecteurs « NON », « ET », « OU », pour les distinguer de ceux du langage courant, mais dans les chapitres suivants nous utiliserons les graphismes classiques « non », « et », « ou ».

Attention Le connecteur OU n'est pas exclusif comme il l'est parfois dans le langage courant (dans la locution « fromage ou dessert » par exemple).

Remarques

- Lorsque l'on a $P \Leftrightarrow Q$, on dit que les assertions P et Q sont **équivalentes**.
- Lorsque l'on a $P \Rightarrow Q$, on dit que P implique Q.
- Par abus on dit « la » négation de P; bien qu'une assertion puisse avoir plusieurs négations, toutes ces négations sont équivalentes. Par exemple, si x est un réel, alors la négation de « x = 0 » peut s'écrire « $x \neq 0$ », mais aussi « $x^2 > 0$ ».

Ex. 7. Soit x un réel.

- La négation de « $x \geqslant -1$ » est « x < -1 ».
- La négation de « $x \le 1$ » est « x > 1 ».
- L'assertion « $x^2-1=0$ » est équivalente à « (x=1) OU (x=-1) ».
- L'assertion « $-1 \leqslant x \leqslant 1$ » est équivalente à « $(-1 \leqslant x)$ ET $(x \leqslant 1)$ ».

Propriétés élémentaires sur les conjonctions et les disjonctions

Soit P, Q et R trois assertions. On a les propriétés intuitives suivantes qui peuvent se vérifier facilement à l'aide d'une table de vérifé :

- l'assertion P et (NON P) est fausse;
- l'assertion P ou (NON P) est vraie (principe du tiers exclu);
- si deux assertions sont équivalentes, alors leurs négations le sont aussi;
- les assertions NON (NON P) et P sont équivalentes;
- les assertions NON (P ET Q) et (NON P) ou (NON Q) sont équivalentes;
- les assertions NON (P OU Q) et (NON P) ET (NON Q) sont équivalentes;
- les assertions $(P \to Q) \to R$ et $P \to Q \to R$ sont équivalentes;
- \bullet les assertions (P ou Q) ou R et P ou (Q ou R) sont équivalentes.

Les deux dernières propriétés nous permettent de noter P et Q et R sans parenthèses et de même pour P ou Q ou R.

Ex. 8. Soit x, y et z trois réels.

- Comme l'assertion x=y=z est équivalente à (x=y) ET (y=z), sa négation est $(x\neq y)$ OU $(y\neq z)$.
- De même, comme l'assertion $x < y \leqslant z$ est équivalente à (x < y) ET $(y \leqslant z)$, sa négation est $(y \leqslant x)$ OU (z < y).

Proposition 1 _____

Soit P, Q et R trois assertions.

- Les assertions $P \to (Q \to R)$ et $(P \to Q) \to (P \to R)$ sont équivalentes.
- Les assertions P ou (Q et R) et (P ou Q) et (P ou R) sont équivalentes.

Démonstration. Il suffit de faire une table de vérité à 8 lignes.

Propriétés élémentaires sur l'implication et l'équivalence

Soit P et Q deux assertions :

- l'assertion $P \Rightarrow Q$ est équivalente à (NON P) OU Q;
- la négation de $P \Rightarrow Q$ est donc P ET (NON Q);
- les assertions $P \Rightarrow Q$ et (NON Q) \Rightarrow (NON P) sont équivalentes;
- les assertions $P \Leftrightarrow Q$ et $Q \Leftrightarrow P$ sont équivalentes;
- les assertions $P \Leftrightarrow Q$ et $(NON P) \Leftrightarrow (NON Q)$ sont équivalentes;
- les assertions $P \Leftrightarrow Q$ et $(P \Rightarrow Q)$ ET $(Q \Rightarrow P)$ sont équivalentes.

Remarque Par définition, l'assertion $P \Rightarrow Q$ est fausse lorsque P est vraie et Q fausse, et uniquement dans ce cas. Donc :

- si P est fausse alors $P \Rightarrow Q$ est vraie;
- si $P \Rightarrow Q$ est vraie et si P est vraie, alors Q est vraie, ce qui donne le sens intuitif habituel de l'implication : si P est vraie, alors Q est vraie.

Exo 1.1 Ainsi, pour démontrer $P \Rightarrow Q$:

- si P est fausse, alors il n'y a rien à faire;
- \bullet si P est vraie, alors on doit prouver que Q est vraie.

Point méthode (pour démontrer $P \Rightarrow Q$)

Pour montrer que l'assertion $P \Rightarrow Q$ est vraie, on peut commencer par supposer P et essayer de prouver Q, ce qui se rédige : « Supposons P et montrons Q ».

Ex. 9. Soit P, Q et R trois assertions telles que $P\Rightarrow Q$ et $Q\Rightarrow R$. Montrons que $P\Rightarrow R$. Pour cela, supposons P et montrons R. Comme $P\Rightarrow Q$ et que P est vraie, on en déduit que Q est vraie. Puis, comme $Q\Rightarrow R$, on en déduit que R est vraie.

Remarques

- L'assertion P ⇒ Q peut donc être vraie même lorsque Q est fausse. Cela peut paraître bizarre à première vue, surtout si l'on a la mauvaise habitude d'utiliser ce symbole « ⇒ » comme une abréviation pour un « donc ».
- Écrire « P donc Q » ou « P implique Q » ne signifie pas la même chose. Dans la première version l'assertion P est vraie alors que dans la seconde, elle ne l'est pas forcément.

Ex. 10. L'assertion « $(1=2) \Rightarrow (6=8)$ » est vraie puisque « 1=2 » est fausse.

Attention

- Ne jamais utiliser le symbole \Rightarrow comme abréviation d'un « donc ».
- Écrire « On a $P \Rightarrow Q$ » ne prétend pas que P est vraie, mais que si P est vraie, alors Q aussi.

Autre formulations Soit P et Q deux assertions.

- Au lieu de dire « on a $P \Rightarrow Q$ », on peut dire indifféremment :
 - * pour que Q soit vraie, il suffit que P le soit;
 - * pour que P soit vraie, il faut que Q le soit;
 - * P est une condition suffisante pour que Q soit vraie;
 - * Q est une condition nécessaire pour que P soit vraie.
- Au lieu de dire « on a $P \Leftrightarrow Q$ », on peut dire indifféremment :
 - * P est vraie si et seulement si Q l'est;
 - * pour que Q soit vraie, il faut et il suffit que P le soit;
 - *~P est une condition nécessaire et suffisante pour que Q soit vraie.

3 Modes de raisonnement

Raisonnement par contraposée

Définition 2

Soit P et Q deux assertions. L'assertion non $Q \Rightarrow$ non P est appelée la **contraposée** de l'implication $P \Rightarrow Q$.

On a vu dans les propriétés élémentaires de la page 10 qu'une implication et sa contraposée sont équivalentes.

Pour montrer qu'une implication $P \Rightarrow Q$ est vraie, il suffit donc de montrer sa contraposée. On dit alors que l'on raisonne **par contraposée**.

Ex. 11. Soit n un entier. Montrons que si n^2 est pair, alors n l'est aussi.

Pour cela, raisonnons par contraposée : montrons que $(n \text{ impair}) \Rightarrow (n^2 \text{ impair})$.

Supposons n impair et montrons que n^2 l'est aussi. Puisque n est impair, il existe un entier k tel que n=2k+1. On a alors :

$$n^2 = 4k^2 + 4k + 1 = 2 \times (2k^2 + 2k) + 1$$

donc n^2 est impair. D'où le résultat.

Raisonnement par double implication

Pour montrer que deux assertions P et Q sont équivalentes, on peut montrer $P \Rightarrow Q$ et $Q \Rightarrow P$. On dit alors que l'on raisonne par **double implication**.

Ex. 12. Soit n un entier. Montrons que n^2 est pair si, et seulement si, n l'est.

- On a déjà prouvé l'implication (n^2 pair) \Rightarrow (n pair). Montrons sa réciproque.
- Si n est pair, alors il existe un entier k tel que n=2k. On a alors $n^2=4k^2=2\times(2k^2)$ qui est pair.

Ainsi, n^2 est pair si, et seulement si, n l'est aussi, autrement dit n et n^2 ont la même parité.

Terminologie $Q \Rightarrow P$ est appelée l'implication réciproque de $P \Rightarrow Q$.

Raisonnement par disjonction de cas

Exo 1.2 Pour démontrer un résultat, il peut être intéressant d'étudier séparément les différents cas de figure.

Ex. 13. Redémontrons que n et n^2 ont la même parité en raisonnant par disjonction de cas selon la parité de n.

- Si n est pair, alors il existe un entier k tel que n=2k. On a alors $n^2=4k^2=2\times(2k^2)$ qui est pair.
- Si n est impair, alors il existe un entier k tel que n=2k+1. On a alors $n^2=4k^2+4k+1$ qui est impair.

Cela conclut car, dans les deux cas, on a obtenu que n et n^2 ont la même parité.

Remarque Nous avons utilisé ici les mêmes arguments que dans l'exemple 12. Ce n'est que la façon de les présenter qui est différente.

Ex. 14. Soit *P*, *Q* et *R* trois assertions. Montrons que les assertions :

$$A = (P \text{ ET } (Q \text{ OU } R))$$
 et $B = (P \text{ ET } Q) \text{ OU } (P \text{ ET } R)$

sont équivalentes, sans faire de table de vérité à 8 lignes.

Procédons par disjonction de cas sur la véracité de P :

- si P est vraie, alors A et B sont toutes les deux équivalentes à $(Q \cup R)$;
- \bullet sinon, A et B sont toutes les deux fausses.

Dans les deux cas, A et B sont équivalentes.

Raisonnement par l'absurde

Pour prouver qu'une assertion P est vraie, on peut supposer qu'elle est fausse et en déduire une contradiction.

Ex. 15. Montrons que $\sqrt{2}$ est un irrationnel.

Raisonnons par l'absurde en supposant que $\sqrt{2}$ est rationnel. Il existe alors deux entiers p et q, avec q non nul, tels que $\sqrt{2}=\frac{p}{q}$.

Quitte à simplifier la fraction, on peut supposer que p et q ne sont pas tous les deux pairs. En élevant au carré l'égalité précédente, on obtient :

$$2q^2 = p^2.$$

Par suite, l'entier p^2 est pair et il en est donc de même de p. On peut ainsi trouver un entier k tel que $p=2\,k$. En remplaçant dans l'égalité $2\,q^2=p^2$, on obtient $2\,q^2=4\,k^2$ et donc :

$$q^2 = 2k^2,$$

ce qui prouve que q^2 est pair. On en déduit que q est pair, ce qui contredit le fait que p et q ne sont pas tous les deux pairs.

L'hypothèse de départ est donc fausse, ce qui montre que $\sqrt{2}$ est irrationnel.

Raisonnement par analyse-synthèse

Lorsque l'on cherche l'ensemble des éléments x de E vérifiant une propriété P(x), on peut procéder par analyse-synthèse.

- Dans la phase d'analyse, on considère un élément x de E vérifiant P(x) et l'on en déduit des propriétés sur x. Grâce à ces conditions nécessaires, on limite la liste des candidats.
- Dans la synthèse, on détermine, parmi les candidats obtenus dans l'analyse, lesquels vérifient P(x).

Ex. 16. Déterminons les réels x tels que $1+x\geqslant 0$ et $1-x^2=\sqrt{1+x}$.

Analyse. Supposons que x soit un réel vérifiant $1+x\geqslant 0$ et $1-x^2=\sqrt{1+x}$.

Alors $(1-x^2)^2=1+x$, ce qui s'écrit aussi $(1+x)^2(1-x)^2=1+x$, ou encore :

$$(1+x)((1+x)(1-x)^2-1)=0$$
 et enfin $(1+x)x(x^2-x-1)=0$.

On en déduit que $\,x\in\Big\{-1,0,\frac{1+\sqrt{5}}{2},\frac{1-\sqrt{5}}{2}\Big\}$.

Chapitre 1. Logique et raisonnement

Synthèse.

- On vérifie facilement que -1 et 0 sont solutions.
- Si $x=\frac{1-\sqrt{5}}{2}$, alors en remontant les calculs ci-dessus, on obtient $(1-x^2)^2=1+x$. Donc, comme $1+x\geqslant 0$ et $1-x^2\geqslant 0$, on a $1-x^2=\sqrt{1+x}$, *i.e.* x est solution.
- Si $x=\frac{1+\sqrt{5}}{2}$, alors $1-x^2<0$ donc x n'est pas solution.

Conclusion. If y a 3 solutions : -1 et 0 et $\frac{1-\sqrt{5}}{2}$.

II Quantificateurs

Les notions d'**ensemble** et d'**élément** sont ici considérées comme des notions premières ; un ensemble correspond intuitivement à une « collection d'objets » qui sont les « éléments » de cet ensemble. Cette notion sera détaillée au chapitre suivant.

Si a est un élément et E un ensemble :

- l'assertion $a \in E$, qui se lit « a appartient à E » ou « E contient a », est vraie si a est un élément de E, et fausse dans le cas contraire;
- lorsque a n'est pas élément de E, on écrit $a \notin E$.

On admet qu'il existe un ensemble, appelé **ensemble vide** et noté \emptyset , qui ne contient aucun élément.

1 Quantificateurs universel et existentiel

Définition 3 ____

Soit P(x) une assertion dépendant d'une variable x appartenant à un ensemble E.

- On note « $\forall x \in E \ P(x)$ » l'assertion qui est vraie si, pour tout élément x de E, l'assertion P(x) est vraie.
- On note « $\exists x \in E \ P(x)$ » l'assertion qui est vraie s'il existe un élément x appartenant à E tel que l'assertion P(x) soit vraie.
- On note « $\exists ! x \in E \quad P(x)$ » l'assertion qui est vraie s'il existe un *unique* élément x appartenant à E tel que l'assertion P(x) soit vraie.

Terminologie Le symbole « \forall » est appelé **quantificateur universel** et le symbole « \exists » est appelé **quantificateur existentiel**.

Remarques

- L'assertion « $\forall x \in E \ P(x)$ » se lit « pour tout x dans E, on a P(x) ».
- L'assertion « $\exists x \in E \ P(x)$ » se lit « il existe x dans E tel que P(x) soit vraie ».
- L'assertion « $\exists ! x \in E \quad P(x)$ » se lit « il existe un unique x dans E tel que P(x) soit vraie » et est équivalente à :

$$\exists x \in E \quad \Big(P(x) \text{ ET } \big(\forall y \in E \quad P(y) \Rightarrow y = x\big)\Big).$$

Convention Si E est l'ensemble vide, alors l'assertion « $\forall x \in E$ P(x) » est vraie.

- **Ex. 17.** $\exists x \in \mathbb{R}$ 2x + 1 = 0 est une assertion vraie.
- **Ex. 18.** $\exists n \in \mathbb{Z}$ 2n+1=0 est une assertion fausse.
- **Ex. 19.** L'assertion $\forall n \in \mathbb{Z} \quad (n > 3 \Leftrightarrow n \geqslant 4)$ est vraie.
- **Ex. 20.** L'assertion $\forall x \in \mathbb{R} \quad (x > 3 \iff x \geqslant 4)$ est fausse.

Attention

• Malgré les apparences, l'assertion « $\forall x \in E \ P(x)$ » ne dépend pas de x.

La lettre x figurant dans cette assertion a le statut de **variable muette**. En effet cette assertion peut aussi être écrite : « $\forall y \in E \ P(y)$ », ou encore « $\forall z \in E \ P(z)$ », sans en modifier le sens et peut d'ailleurs être énoncée sans la moindre lettre x, y ou z : « tous les éléments de E vérifient P ».

- Il en est de même des assertions « $\exists x \in E \ P(x)$ » et « $\exists ! x \in E \ P(x)$ ».
- **Ex. 21.** Soit f une fonction de IR dans IR.
- L'assertion « $\forall x \in \mathbb{R}$ $f(x) \geqslant 0$ » signifie que la fonction f est positive.
- L'assertion « $\exists x \in \mathbb{R}$ f(x) = 0 » signifie que la fonction f s'annule.

Dans les deux cas, la traduction en français ne fait pas intervenir la variable muette x.

Ex. 22. À partir de l'assertion « $x + y^2 = 0$ » on peut en former d'autres :

- « $\forall x \in \mathbb{R}$ $x+y^2=0$ » est une assertion qui ne dépend que de la variable y. On peut la noter P(y). Cette assertion n'est vérifiée pour aucune valeur de y car s'il existait un réel y tel que P(y) soit vraie, on aurait $1+y^2=0$, ce qui est absurde.
- « $\exists x \in \mathbb{R}$ $x + y^2 = 0$ » est une assertion qui dépend de la variable y, et qui est vraie pour toute valeur de y (il suffit de prendre $x = -y^2$).
- « $\exists y \in \mathbb{R}$ $x + y^2 = 0$ » est une assertion qui dépend de la variable x, et qui est vraie si, et seulement si, la variable réelle x est négative.

Notation Par abus, et lorsqu'il n'y a pas d'ambiguïté, on note « $\forall x \ge 0$ P(x) » au lieu de « $\forall x \in \mathbb{R}_+$ P(x) ».

De même, on note « $\forall n \geqslant 1 \quad P(n)$ » au lieu de « $\forall n \in \mathbb{N}^* \quad P(n)$ ».

Méthodes et rédaction

Pour démontrer une assertion du type : $\forall x \in E \quad P(x)$

La façon la plus élémentaire de procéder est de fixer un élément x quelconque dans E puis de démontrer que P(x) est vraie.

La rédaction est alors : « $Soit \ x \in E$. $Montrons \ P(x)$ ».

Ex. 23. Soit f la fonction de IR dans IR définie par : $f(x) = x^2 + x + 1$.

Démontrons que : $\forall x \in \mathbb{R} \quad f(x) > 0$.

Soit $x \in \mathbb{R}$. Montrons que f(x) > 0. On a :

$$f(x) = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4},$$

et donc $f(x) \ge \frac{3}{4} > 0$. D'où le résultat.

Remarque Dans le cas particulier où $E = \mathbb{N}$, pour prouver une assertion du type :

$$\forall n \in \mathbb{N} \quad P(n),$$

on peut évidemment penser à utiliser une démonstration par récurrence. Ce type de raisonnement est détaillé à la fin de ce chapitre.

Pour démontrer une assertion du type : $\exists x \in E \quad P(x)$

- Si l'on dispose d'un candidat évident, alors il suffit de l'exhiber.
- Si un tel élément n'est pas évident à trouver, on peut commencer par une phase d'analyse. L'idée est de supposer qu'un tel élément x existe, d'en déduire certaines de ses propriétés pour déterminer un élément qui convienne. À ce stade, on trouve donc des conditions nécessaires pour qu'un élément vérifie P. Cette phase d'analyse peut rester au brouillon.

On vérifie ensuite si le(s) élément(s) obtenu(s) vérifie(nt) bien P. Dès que l'un d'entre eux convient, l'assertion est démontrée.

Ex. 24. Soit f la fonction de IR dans IR définie par $f(x) = x^2 + x + 1$. Pour démontrer l'assertion $\exists x \in \mathbb{R}$ f(x) > 2, il suffit de constater qu'en prenant x = 1, on a f(x) = 3 > 2.

Ex. 25. Montrons qu'il existe un rationnel x tel que $3x^3 + 4x^2 + 4x + 1 = 0$.

Analyse (formellement non nécessaire, mais permettant de cerner les solutions éventuelles).

Soit x un tel rationnel que l'on écrit sous forme de fraction irréductible $x = \frac{p}{a}$

En multipliant par q^3 la relation $3x^3+4x^2+4x+1=0$, on obtient $3p^3+4p^2q+4pq^2+q^3=0$, ce qui peut s'écrire :

$$p(3p^2 + 4pq + 4q^2) = -q^3$$
 et $3p^3 = -q(4p^2 + 4pq + q^2)$.

Le caractère irréductible de la fraction $\frac{p}{q}$ et le fait que p divise q^3 et q divise $3p^3$ nous laissent penser que $p=\pm 1$ et $q=\pm 1$ ou $q=\pm 3$ (ce que l'on pourrait montrer rigoureusement à l'aide des résultats du chapitre 17 d'arithmétique). D'autre part, il est clair qu'un tel x est nécessairement négatif. Il ne reste donc plus que deux candidats -1 et $-\frac{1}{2}\cdot$

Synthèse. Il est facile de voir que -1 n'est pas solution (malheureusement, c'était le premier qu'on avait envie d'essayer!) et un calcul rapide montre que $-\frac{1}{3}$ convient.

Bien entendu, cette toute dernière vérification suffirait pour obtenir le résultat souhaité, la partie d'analyse pouvant rester au brouillon.

Pour démontrer une assertion du type : $\exists ! x \in E \quad P(x)$

- Pour démontrer la partie « unicité », on peut considérer deux éléments a et b tels que P(a) et P(b) soient vraies, et montrer que a=b.
- Pour la partie existence, si l'on n'a pas de candidat évident, on peut toujours faire une analyse-synthèse dans laquelle, la plupart du temps, la partie « analyse » permettra d'identifier un unique candidat et donc de montrer l'unicité.

Ex. 26. Soit a, b, c et d quatre réels tels que $a \neq b$.

Montrons qu'il existe une unique fonction affine f de IR dans IR telle que f(a) = c et f(b) = d.

Analyse. Supposons que f soit une fonction affine telle que f(a)=c et f(b)=d. Il existe alors deux réels α et β tels que : $\forall x \in \mathbb{R}$ $f(x)=\alpha(x-a)+\beta$.

Exo

1.3